

Présentation du programme HydroWater

Dimensionnement des réseaux de distribution d'eau (Eau froide, eau chaude)

Jean Yves MESSE – THERMEXCEL Copyright © 2004 - 2013 – ThermExcel - All Rights Reserved

PRESENTATION DU PROGRAMME HYDROWATER

Caractéristiques et fonctions du programme

Ce programme de calcul sur Excel permet de dimensionner et d'effectuer le calcul des pertes de charge sur les circuits de distribution d'eau (réseaux en adduction d'eau, eau froide ou eau chaude à usage sanitaire, réseaux d'incendie armés (RIA), etc.)

Il s'applique sur tous les types de réseaux et tient compte tout particulièrement des conditions de fonctionnement et des particularités spécifiques sur les canalisations, telles que :

- La température de l'eau véhiculée jusqu'à 320°C
- La pression de service de l'installation.
- La nature des différents types de matériaux utilisés (conduite en acier, cuivre, PVC, parois maçonnées, etc.)
- Les différents types de modules de perte de charges.
- La correction du débit de base éventuel par la prise en compte d'un coefficient de simultanéité.

La différence par rapport au programme hydrotherm c'est qu'on impute des débits et non des puissances thermiques sur la feuille de travail. Il peut donc être utilisé également pour des applications telles que les réseaux de distribution d'eau à usage sanitaire. Tous les autres éléments du programme sont identiques au programme hydrotherm ou HydroExcel à l'exception de la correction des pertes de charge par antigel qui a été retiré.

Des modules de calculs complémentaires sont incorporés au programme, à savoir :

- Une liste constituée de 415 canalisations réparties sur 17 catégories de réseaux.
- Une liste des modules de perte de charge.
- Un programme de calcul de diaphragmes.
- Un programme de calcul de vannes de régulation
- Un programme de calcul de module de perte de charge équivalent en fonction de la perte de charge relevée.
- Un programme de calcul d'évaluation de la puissance motorisée de la pompe en fonction de la charge calculée.

Le programme de calcul est pourvu d'une commande barre personnalisée donnant accès aux différentes procédures, boîtes de calculs et macro-commandes.

Les fichiers de travail sont créés séparément permettant d'alléger le stockage des données.

En outre à la différence aux programmes HyroTherm et HydroExcel, Il peut être imputé des diamètres de conduites autres que ceux intégrés dans la liste du programme HydroWater ainsi que des formes géométriques de type quadrangulaire.

ThermEx

Les matériaux intégrés dans le programme HydroWater pour le calcul des pertes de charge, sont :

- 1 Cuivre, laiton
- 2 Inox
- 3 Pvc, polyéthylène ou Pehd
- 4 Plomb
- 5 Aluminium
- 6 Amiante-ciment
- 7 Acier T3, T10 non soudé
- 8 Acier soudé T1
- 9 Acier galvanisé soudé
- 10 Acier spiralé
- 11 Fonte
- 12 Fibre de verre
- 13 Béton lisse
- 14 Béton ordinaire
- 15 Flexibles métaux tendus
- 16 Flexible PVC tendu
- 17 Flexible semi tendu

Intégration de la barre d'outils personnalisée du programme de calcul

Les procédures et les fonctions dans un fichier add-in ajoutent des commandes optionnelles dans l'environnement de Microsoft Excel.

Par exemple sur Excel 2007 / 2010, la barre de commande est accessible en cliquant sur l'onglet « **Compléments** » qui est disponible après avoir chargé le programme de calcul et activé les macros.

Dans le cas présent, une barre d'outils personnalisée du programme HydroWater de ThermExcel s'est rajoutée. (Ceci est valable également pour les autres programmes)

Sur cette barre d'outils personnalisée on peut accéder à différentes fonctions du programme. On va en premier lieu cliquer sur **«HydroWater : Documents** » ou va s'afficher un menu déroulant et en cliquant sur **« Création d'un nouveau fichier de travail** » on va créer un document de travail qu'on pourra ensuite sauvegarder.

Toujours sur cette barre d'outils personnalisée on peut accéder à d'autres différentes fonctions du programme comme par exemple sur « **Outils de calculs** » avec par exemple l'affichage de :

« Module de calcul de perte de charge »	« Module de calcul de diaphragme »
Calcul module perte de charge	Calcul du diamètre d'un diaphragme
Unités de pression Pa (Pascal)	Unites de pression mbar (100 Pa ou 0,1 kPa)
- Perte de charge relevée 1000 Pa	Pression différentielle (P1 - P2) 1000 mbar
- Température de l'eau (limité à 320°C) 10 °C	Température de l'eau (limité à 320°C) 200 °C
- Débit de base Q (voir formule empirique)	Débit de base Q (voir formule empirique) 50000 I/h
- Diamètre nominal DN32 - 1 1/4" 💌	Diamètre nominal (Voir table) - Ø > 32 mm 400 💌
- Dispoètro intériour de la robinettorie	- Nature de la canalisation
Masse volumique de l'eau	Désignation courante canalisation
Chaleur massique de l'eau	- Diamètre intérieur du tube (D) :
- Débit réel selon la température	- Masse volumique de l'eau
Vitesse circulation orifice robinetterie	Chareur massique de reau Déhit réel selon la temnérature
- Pression dynamique	Vitesse de circulation réseau
Module équivalent de la perte de charge	Diamètre du diaphragme (d) :
P(w/h),08A Attention aux décimales.	
Q=	$Q = \frac{P(w/h) \cdot 0.86}{m}$
Formule empirique configuration windows en ©2001 Jean Yves MESSE. paramètres régionnaux)	Formule empirique
	<u></u>
« Modules de calcul des	vannes de régulation »
Calcul vanne de regulation	UserForm1
Unité de pression mbar (100 Pa ou 0,1 kPa)	Vannes régul 1 Vanne régul 2 Autorité vanne
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique Q (Débit) Autorité a = 0.5 à 0.7 P (Puissance) 1 and 1 and
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique $q_{(Débit)}$ Autorité a = 0.5 à 0.7 P (Puissance) 1 1 2 2 2 2 2 2 2 2 2 2
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique Q(Débit) Autorité a = 0.5 à 0.7 P (Puissance) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique Q (Débit) Autorité a= 0.5 à 0.7 P (Puissance) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Unité de pression mbar (100 Pa ou 0,1 kPa) Température de l'eau (Limitée à 320°C) 90 °C Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique Q (Débit) Autorité a= 0.5. à 0.7 P (Puissance) 1 0 (Levée clapet) 1 (Levée clapet) 1 Vanne à caractéristique logarithmique $q_{(Débit)}$ Autorité a= 0.5. à 0.7 P (Puissance) 1 0 (Levée clapet) 1 (Levée clapet) 1 (Levée clapet) 1
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique $ \begin{array}{c} $
Unité de pression mbar (100 Pa ou 0,1 kPa)	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique $q_{(Débit)}$ Autorité a = 0.5 à 0.7 P (Puissance) $1 \rightarrow 0$ $1 \rightarrow 0$ $1 \rightarrow 0$ $1 \rightarrow 0$ $1 \rightarrow 0$ $(Levée clapet)$ $1 \rightarrow 0$ $(Levée clapet)$ $1 \rightarrow 0$ Vanne à puissance calorifique linéaire $q_{(Débit)}$ Autorité a = 0.5 P (Puissance) $1 \rightarrow 0$ $1 \rightarrow 0$ $1 \rightarrow 0$ $1 \rightarrow 0$
Unité de pression mbar (100 Pa ou 0,1 kPa) Température de l'eau (Limitée à 320°C) 90 °C Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique $ \begin{array}{c} $
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique $q_{(Débit)}$ Autorité a = 0.5 à 0.7 P (Puissance) $1 \frac{1}{2} $
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique $q_{(Débit)}$ Autorité a = 0.5 à 0.7 P (Puissance) $1 \rightarrow 0$ $1 \rightarrow 0$
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique Q(Débit) Autorité a = 0.5 à 0.7 P (Puissance) 1 0 (Levée clapet) 1 Vanne à puissance calorifique linéaire Q(Débit) Autorité a = 0.5 P(Puissance) 1 0 (Levée clapet) 1 (Levée clapet) 1 (Le
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique Q(Débit) Autorité a = 0.5 à 0.7 P (Puissance) P(Dibit) P(Dibit) P(Dibit) Vanne à puissance calorifique linéaire Q(Débit) Autorité a = 0.5 P(Débit) P(Dibit) P(Dibit)
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique Q(Débit) Autorité a = 0.5.B.0.7 P(Puissance) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Vanne à puissance calorifique linéaire Q(Débit) Q(Débit) Q(Débit) Autorité a = 0.5 P (Puissance) Q(Débit) Q(Débit) Q(Débit) Q(Débit) Q(Débit)
Unité de pression mbar (100 Pa ou 0,1 kPa) - Température de l'eau (Limitée à 320°C) 90 °C - Pression de service de l'installation	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique Q(Débit) P(Puissance) Q(Débit) Quérité a=0.5.3.0.2 P(Puissance) Q(Débit) Quérité a=0.5.3.0.2 P(Puissance) Q(Débit) Quérité a=0.5.3.0.2 Quérité a=0.5 Vanne à puissance calorifique linéaire Quérité a=0.5 P(Puissance) Q(Débit) Quérité a=0.5 Quérité a=0.5 Q(Débit) Quérité a=0.5 P(Puissance) Q(Débit) Quérité a=0.5 Quérité a=0.5 Q(Débit)
Unité de pression mbar (100 Pa ou 0,1 kPa) • Température de l'eau (Limitée à 320°C) 90 °C • Pression de service de l'installation 3 Bar (1000kPa) • Masse volumique de l'eau	Vannes régul 1 Vanne régul 2 Autorité vanne Vanne à caractéristique logarithmique P(Puissance) Q(Dabit) P(Puissance) P(Duissance) P(Puissance) P(Duissance) P(Puissance) Vanne à puissance calorifique linéaire Q(Dabit) Autorité a = 0.5 P(Duissance) P(Puissance) P(Dubbit) P(Puissance) Outorité a = 0.5 P(Puissance) P(Dubbit) P(Puissance) Outorité a = 0.5 P(Puissance) Outorité (Levée clapet) Outorité a = 0.5 P(Dubbit) Outorité a = 0.5 Outorité (Levée clapet) Outorité a = 0.5 Délité (Levée clapet) Outorité a = 0.5 Délité (Levée clapet) Outorité a = 0.5 Outorité a = 0.5 Outorité a = 0.5 Outorité (Levée clapet) Outorité a = 0.5 Outorité (Levée clapet) Outorité (Levée clapet
Unité de pression mbar (100 Pa ou 0,1 kPa) • Température de l'eau (Limitée à 320°C) 90 °C • Pression de service de l'installation	Varnes régul 1 Varne régul 2 Autorité varne Varnes à caractéristique logarithmique Q(bébi) P(Puissance) Q(bébi) Q(bébi) Q(bébi) P(Puissance) Q(Débi) Q(bébi) Q(bébi) P(Puissance) Q(bébi) Q(bébi) Q(béb) Q(béb) Q(béb) Q(béb) Q(b
Unité de pression mbar (100 Pa ou 0,1 kPa) • Température de l'eau (Limitée à 320°C) 90 °C • Pression de service de l'installation	Varnes régul 1 Varne régul 2 Autorité varne Varnes a caractéristique logarithmique Q(Dabit) P(Puissance) Q(Dabit) Q(Dabit) Q(Dabit) <

« Module de calcu	l moteur de pompe »	« Module perte de charge singulières »
Dimensionnement moteur d	le pompe en circuit fermé 📃	Liste des éléments de perte de charge singulières
Unites de pression Bar (Hauteur manométrique total Débit de base Q (voir formul Rendement pompe Rendement transmission, m <u>Résultats des éléments hydra</u> Energie mécanique fluide Rendement pompe & transm Energie utile absorbée arbre Consommation énergie élect	(100000 Pa ou 100 kPa) ▼ le 20 mbar le empirique) 200 m3/h 	Positionnez-vous au préalable dans la colonne "Désignation éléments" du tableau de calcul. Cliquez avec la souris sur la ligne souhaitée, les éléments seront imputés directement dans le tableau de calcul. Avec l'utilisation du facteur de friction, le coéfficient K sera déterminé automatiquement en fonction du diamètre nominal. Sélection élément de perte de charge particulière Facteur de friction standard (ft) Coéfficient K de perte de charge fixe. (A utiliser le cas échéant) Vous pouvez imputer dans ces cases des valeurs non répertoriées dans la liste intégrée
Puissance nominale moteur	·	©2001 Jean Yves MESSE
Rendement moyen du mote	eur	
Puissance nominale active a	absorbée	
Facteur de puissance (Cos)		
Puissance électrique nomina	ale	
Intensité nominale	230V Tri 400V	
$ \begin{array}{c} & \text{Moteur < 0:} \\ \hline \\ Q = \frac{P(w/h) \cdot 0.86}{\Delta T} \\ \hline \\ \text{Formule empirique} \\ \hline \\ \text{Formule empirique} \\ \end{array} \begin{array}{c} \text{Attention aux d} \\ \text{Virgule en France } \\ virgule$	75 kw Moteur > 0.5 kw décimales. ngais et point ir vindows en jonnaux) Moteur > 0.5 kw Valider OK ©2001 Jean Yves MESSE	
(
		-
	La bibliothèque	es des canalisations
Codage des canalisa	itions de la table réseaux	
		our OK la seta destructura la destructura en des
Ensuite positionnez v	ous dans la colonne code dans l'	entité réseaux et diquez avec le bouton de droit de la
souris + collez.		
Codage Nati	ure Désignation	Dim. nomini Ø INT épais. Ø EXT. rugosité 🔺
250T acie	er T10 273 / 6,3	DN250 - 10" 260,40 6,3 273,00 0,045
300T acie	er T10 323,9 / 7,1	DN300 - 12" 309,70 7,1 323,90 0,045
350T acie	er T10 368 / 8	DN350 - 14" 352,00 8 368,00 0,045
400T acie	er T10 419 / 10	DN400 - 16" 399,00 10 419,00 0,045
Réseaux Acie	er Galva Basic	Pression 10 & 16 bar
12TG acie	ergalva T1 12/17	DN12 - 3/8" 13,20 2 17,20 0,15
15TG acie	ergalva T1 15/21	DN15 - 1/2" 16,60 2,35 21,30 0,15
20TG acie	ergalva T1 20/27	DN20 - 3/4" 22,20 2,35 26,90 0,15
25TG acie	ergalva T1 26/34	DN25 - 1" 27,90 2,9 33,70 0,15
32TG acie	ergalva T1 33/42	DN32 - 1 1/4 38,80 2,9 42,40 0,15
40TG acie	ergalva T1 40/49	DN40 - 1.5" 42,50 3,25 48,30 0,15
50TG acie	ergalva T1 50/60	DN50 - 2" 53,80 3,25 60,30 0,15
65TG acie	ergalva T1 66/76	DN65 - 2.5" 69,60 3,25 76,10 0,15
80TG acie	ergalva T1 80/90	DN80 - 3" 82,40 3,25 88,90 0,15 💌
Vous pouvez imputer a	au clavier le code	directement dans la cellule souhaitée OK

« Feuille de ca	lcul du v	vase	e d'e	expa	ansio	n et	équi	peme	nts	dive	ers»	
			Linéair		Calorifu	ge	Peir	nture	Con	tenan	ce eau	
Volume d'eau (valeurs indicatives	1		m	épr	surf/m2/ml	Qixisurf	surf/m2/m	Qixisurf	U	litres	UxQ	
- ventilo-convecteurs : 5 à 617 1kW/h												
- aérothermes : 7 à 8 / 1 kW/h									8 kw	8,001	64,001	
- panneaux de sol : 8,5 à 101 / 1kW/h										9,001		
- radiateurs acier : 10 à 111 / 1kW/h										11,00		
- chaufferie centrale et collectives : 21	/ 1kW/h									2,001		
Ønominal	ØEXT. ØIN	IT							m	l/m	mxQ	
CU10 10/12	12,00 mm 10,	,00 mm		25 mm	0,195 m2		0,038 m2			0,0791		
CU12 12/14	14,00 mm 12,	,00 mm		25 mm	0,201 m2		0,044 m2			0,113		
12 12/17	17,20 mm 13,	,20 mm		25 mm	0,211 m2		0,054 m2	0,54 m2	10 m	0,1371	1,371	
CU14 14/16	16,00 mm 14,	,00 mm		25 mm	0,207 m2		0,050 m2			0,154		
15 15/21	21,30 mm 16,	,60 mm		25 mm	0,224 m2		0,067 m2			0,216		
CU16 16/18	18,00 mm 16,	,00 mm		25 mm	0,214 m2		0,057 m2			0,2011		
0018 18/20	20,00 mm 18,	,00 mm		25 mm	0,220 m2		0,063 m2			0,2541		
20/22	22,00 mm 22,	20 mm		25 mm	0.241 m2		0,003 m2			0,3001		
20 20/21	33.70 mm 22	.20 mm		25 mm	0.263 m2		0,004 m2			0,0011		
CU26 26/28	28.00 mm 26	.00 mm		25 mm	0,245 m ²		0.088 m2			0.5311		
CU30 30/32	32,00 mm 30	.00 mm		25 mm	0,257 m2		0,100 m2			0,7071		
32 33/42	42,40 mm 36	,60 mm		25 mm	0,290 m2		0,133 m2			1,0521		
CU34 34/36	36,00 mm 34,	,00 mm		25 mm	0,270 m2		0,113 m2			0,9071		
CU40 40/42	42,00 mm 40,	,00 mm		25 mm	0,289 m2		0,132 m2			1,256 (
40 40/49	48,30 mm 42	2,50 mm		25 mm	0,309 m2		0,152 m2			1,4181		
50 50/60	60,30 mm 53,	,80 mm		50 mm	0,503 m2		0,189 m2			2,2721		
65 66/76	76,10 mm 69,	,60 mm		50 mm	0,553 m2		0,239 m2			3,8031		
80 80/90	88,90 mm 82,	,40 mm		50 mm	0,593 m2		0,279 m2			5,3301		
100 107/114	114,30 mm 105,	,30 mm		50 mm	0,673 m2		0,359 m2			8,7041		
125 139 / 7	133,00 mm 125,	,00 mm		50 mm	0,732 m2		0,418 m2			12,27		
150 168,3 / 4,	5 168,30 mm 159,	,30 mm		50 mm	0,842 m2		0,528 m2			19,92		
200 219,176,3	219,10 mm 207,	,30 mm		50 mm	1,002 m2		0,688 m2			33,73		
250 273 / 6,3	273,00 mm 260,	,40 mm		50 mm	1,171 m2		0,857 m2			53,23		
	1 ###### 303	,10 mm			Coloriánes		Duinhau	0.54	Valu	15,23	65 371	
					Calorinage		Feinture	0,04	1010	ne a cau	00,010	
Calcul du vase d'expans	on sous pres	ssion	d'azot	te (Va	se d'exp	ansion	fermé)					
			- Volume d'eau dans l'installation (Va)						65,37L			
Pression circuit d'eau			- Pression statigue (Pa) + 0,3 bar (pression de gonflage vase d'exp						ansion)			
			- Process	an de foe	tionnement	nstallation (Po = Proceio	n relativa)	<i>,</i>		3.00 bar	
Calcul expansion			- ressie	a de rom		instantation (i	a - Pressie	a readinej			0,00 Dai	
- Temp. d'eau de remplissage	10 °C		- Densit	é cau à 1 b	oar pour 10°C	, en ka/m3	999,78	Facteur d'o	xpansion	(n)	3,58%	
Tomp d'any as fonctionner	90.10		• Deneit (000 2 0 L		on kal=2	965.00	Volument	von		2 341	
Factors do secondo	lation		- Densite	eau a 3 b	ar pour 30 C	, en ngrmð	- 365,20	volume d'o	xpansion	eau	2,040	
r acteur de pression insta		、								 	2,01	
volume utile du vase exp	ansion (Vexp)	J							 1	[4,70L	
1	en cas de per	te d'e	au ins	stallati	on			2,00L	ж	2,01	4,01L	
Volume utile de sécurité		U_1								[8,71L	
Volume utile de sécurité Volume nominal du vase	d'expansion (vnj										
Volume utile de sécurité Volume nominal du vase	d'expansion (vnj			_							
Volume utile de sécurité Volume nominal du vase	d'expansion (vnj			-							

DETAILS DU PROGRAMME HYDROWATER

Tableau du calcul de perte de charge

Le fichier de travail peut être constitué de différentes feuilles de calcul. Vous pouvez à partir du même fichier, insérer une nouvelle feuille de calcul ou dupliquer la feuille de calcul en cours pour une étude similaire et apporter les modifications complémentaires par la suite.

Dans votre tableau de calcul vous pouvez rajouter ou retirer des lignes de calcul, sans altérer les phases de calculs.

Dans le tableau de calcul vous pouvez en complément déterminer la hauteur manométrique totale et le NPSH de la pompe (Net Positive Suction Head)

Unités de mesures

Vous pouvez également choisir l'unité de pression de votre choix dans l'étude :

- Pascal
- DecaPascal (10 Pa)
- mm d'eau (9.807 Pa)
- mbar (100 Pa)
- Torr / mm Hg (133.3226 Pa)
- Kilo Pascal (1000 Pa)
- Psi, Pound per square inch (6896.47 Pa)
- Bar (100000 Pa)

Débits instantanés

Le coefficient de simultanéité est facultatif. Il permet par exemple dans le cas ou plusieurs appareils sont à alimenter on peut considérer que tous ces appareils ne fonctionnent pas obligatoirement en même temps.

Le programme dispose d'un menu déroulant permettant de sélectionner un coefficient de simultanéité le cas échéant faisant référence au DTU Plomberie, 60.11 :

 $y = \frac{0.8}{\sqrt{x - 1}}$

- y = Coefficient de simultanéité à appliquer sur le débit de base.
- x = Nombre d'appareils installés.

Le débit de base (Q) est déterminé :

• Installation standard = Q * y

- Hôtels = Q * y * 1,25
- Restaurants = Q * y * 1,5

En outre le programme permet l'adoption de différentes combinaisons possibles :

- (imputation du cumul débit de base) * (coefficient de simultanéité)
- (Imputation du débit unitaire de base) * (nombre d'appareils)
- (Imputation du débit unitaire de base) * (nombre d'appareils) * (coefficient de simultanéité)

Unités de débit

Les débits de base peuvent être imputés en :

- Litre / seconde (l/s)
- Litre / heure (l/h)
- Mètre cube / heure (m3/h)

Pour chaque feuille du tableau de calcul, la présentation se fait, soit :

En affichage basic :

ThermExcel – Jean Yves MESSE Copyright © 2004 - 2013 - All Rights Reserved

	Choix unité de pressiv - Masse volumique du dési Température de l'eau - Pression absolue de vapo - Masse volumique de l'eau	en it de ba dans orisatio i sur le	mbar ase à i le ré on sur circu	(100 P 20'C Seat Tinsta it à 8(a) allatio)'C	998,397 80°C 0,474 971,642	kqfm3 bar kqfm3						Affic	hage	menu	Hydro	Water	
	- Chaleur massique de l'ea	u≾80 ■	Cetz	5 971,	64kg	4,197	kqfm3) 										
	Unité de débit		D6bitd	obaro	on Hr													
	<u>Matériau de base</u>	E	Aciers	oud6 T1	1					Choix s	simulta	anéité	Plamborio, D	TU 60.1 - E	Débitbar	₀*0,87(×-1	Y0,5	
			C	alc	ul p	erte de o	chai	ge po	our rése	au de d	listribu	ution o	d'eau à 80).C				
Ber	Désignations éléments	Lin6ai	Mod	dules	PdC	B	ase d	ébit à :	2010	Débit	Types r	éseaux(dimensions in	ntérieure	Vitess	Pression	Perte	de charge
		tubo	KFixe	к	Nbro	Déb.base	Nbre	simultz	Déb.insta	réel	Bouht	Larg	Indi Matériaux	Farme	réelle	dynami	Unitairo	Tatalo
		m	Valou	r	U	16	U	Valour	- Hr	- Mr	mm	mm	Naturo		mix	mbar	mbartm	mbar
	- Robinet boisseau - d 1/d2	= 0.8 I		0,14	2	56,00	150	0,07	3,67	3,77	53,8		Aciersoud	Circulair	1,66	13,37		3,76
	Colonne montante - Réseau distribution - Té (passage ligne droite) - Réduction - d2/d1 = 0.75	Rdc 4	0,16	0,4 0,16	1	48,00 48,00 48,00	135 135 135	0,07 0,07 0,07	3,32 3,32 3,32	3,41 3,41 3,41	53,8 53,8 53,8		Aciorsoud Aciorsoud Aciorsoud	Circulair Circulair Circulair	1,50 1,50 1,50	10,92 10,92 10,92	4,37	17,47 4,39 1,75
	Colonne montante	étag	<u>e 1</u>			05.00			0.40	0.40							6.45	
	 Reseau distribution Té (passage ligne droite) Réduction - d1/d2 = 0.75 	4	0,16	0,42 0,16	1	25,00 25,00 25,00	90 90 90	0,08 0,08 0,08	2,12 2,12 2,12	2,18 2,18 2,18	42,5 42,5 42,5		Aciorsoud Aciorsoud	Circulair Circulair Circulair	1,54 1,54 1,54	11,45 11,45 11,45	0,15	24,59 4,84 1,83
	Colonne montante - Réseau distribution	étag 4	 e_2 			12.00	52	0.11	1.34	1.38	36,6		Aciersoud	Circulair	1.31	8,37	5.47	21.89
	- Té (passage ligne droite)			0,44	1	12,00	52	0,11	1,34	1,38	36,6		Aciersoud	Circulair	1,31	\$,37	-,	3,65
	- Réduction - d1/d2 = 0.75		0,16	0,16	1	12,00	52	0,11	1,34	1,38	36,6		Aciersoud	Circulair	1,31	\$,37		1,34
	Colonne montante	étao	е 3															
	- Réseau distribution	36				7,00	28	0,15	1,08	1,11	36,6		Aciersoud	Circulair	1,05	5,38	3,57	128,41
	-Té (passage ligne droite)			0,44	1	7,00	28	0,15	1,08	1,11	36,6		Aciersoud	Circulair	1,05	5,38		2,35
	- Réduction - d1/d2 = 0.75		0,16	0,16	1	7,00	28	0,15	1,08	1,11	36,6		Aciersoud	Circulair	1,05	5,38		0,86
	- Réseau distribution	19				2,50	12	0,24	0,60	0,62	27,9		Aciersoud	Circulair	1,01	4,99	4,68	88,88
	- Coude standard 90'			0,69	4	2,50	12	0,24	0,60	0,62	27,9		Aciersoud	Circulair	1,01	4,99		13,81
	- Coude standard 45 - Dahinat haissanu - d1/d2	- 0.8		0,37	- 0	2,50	12	0,24	0,60	0,62	27,9		Aciersoud	Circulair	1,01	4,99		11,05
	- Robinet boissead - a iraz			0,10		2,00	16	0,24	0,00	0,02	21,7		Heipradua	Circulair	1,01	4,77	5.07	0,01
	- Reseau distribution cuivre	10			F	1,50	6	0,36	0,54	0,55	26		Aciersoud	Circulair	1,04	5,24	5,37	90,00
	Coude standard 90 Coude standard 45'			0.37	3	1,50	6	0,36	0,54	0,55	26		Actorsoud	Girculair	1,04	5,24		5.89
•••••				, ., ,	Ť	1,00	Ť	0,00	0,04	0,00			Helpisbaa		1,04	,		0,00
										Tota	al perte	de ch	arge du ré	seau h	ydraul	lique en	mbar :	1173,18
						- Coefficie	ents m	ajoratio	on de sécur	ité (assem	blages n	nal réalis	és, entartrag	e prévisi	onnel, c	etc.)	5%	58,66
	Calcul du NPSH (Pomp	e aspi	rante)	en m		Désigna	tion	des é	quipemen	ts anne	Ies					Quant	Pdc/U	
	- Altitude			80m		- Disconn	ecteu	ir hyhra	ulique									
	- Température dufluide		_	2010		- Filtre										1	77kP⊲	770,00
	 nauteur geometrique das Parte de obrece récordent 	spiratio sociaati	ion ion	1.0m		- vanne d	ie reg ir	uiation										
	 Pression barométrique dé 	iopirat favorz	able - 2	9,98		- Divers	-1											
	- Deseries de un origination								To	tal per	e de r	hares	a du circu	it bud	raulia	ue en l	mbar	2001.83
	- Pression de Vaporisation			0,24		- Proceine	rale	ina di	onible nu r	aint la chu	ie de t	á an her		a say	aanu	- Soit on	mbar:	300.00
	- masse volumique dufluide			998		Heression	neiat	ive aisp áisi-i	sonible au p	oincie plu	is eloigh e	e en bar		0,50 bar	a file i de	- Solt en	hala 2	2040.40
	- NPSH disponible en métro	e de lic	quide	1,75		- nauteur	geon	ietrique	en circuit	ouvert en	m 	52,0M	U	ensite di	anulae	971,64	Koyrm 3	3049,19
_						- Pression	i aisp	onible e	en amont du	surpress	eur a dès	suire en	001	3,00 bar		- Soit en	mbar:	3000,00
									Hauteu	ir mano	ométric	que to	tale (HMT	J de la	a pom	pe en i	mbar :	2351,02

En complément, dans le cas du dimensionnement d'une pompe ou d'un surpresseur d'eau, la hauteur manométrique sera déterminée également en fonction de :

- la pression relative disponible au point le plus éloigné,
- la hauteur géométrique entre le point d'alimentation et du point situé le plus haut
- la pression de la pression disponible au point de branchement

Dans le cas d'une pompe aspirante sur un circuit ouvert on peut également effectuer en complément le calcul du NPSH disponible (Hauteur de charge nette absolue)

En affichage complet, le tableau visualise en complément :

• Les indices de rugosité.

- La masse volumique de l'eau.
- La chaleur massique de l'eau.
- La viscosité dynamique de l'eau.
- Le nombre de Reynolds.

Cliquez sur cette image pour effectuer un affichage complet

	Ob - i i + (mba	r (100 P	a)																			-
·	Chuix unite de pressi	Lis de		2.00%														Afficha	age m	enu H	lydro∀at	er		
	• Masse volumique du de	Dicae	Dase	a201		998,397	kqfm.	3											-	-				
·	<u>remperature de reau</u>	dan	<u>s ie</u>	rese	au	30 C																		
	Pression absolue de vapori: Marca de l'aport:	sation	sur II	nstalla I sore	tion	0,474	bar																	
	 Masse volumique de l'eau si Cholour maggique de l'eau à 	anie cii 80°C /	reule a at 3.91	1 6 A L	2003	911,642	k grm.	, ,																
	- Chareer massique de read a		2030	11,046	grinio	9/121	Kqrm.																	
· ·	<u>Unité de débit</u>	<u> </u>	Débit	do baro	onlitz			•														_		
	Matériau de base		Acier	roudé T	1			•					Choiz s	imulta	néité	Plamborio,	DTU 60.1-1	Débitbaro	•0,87(×	-1)^0,5		▼		
								Ca	alcul per	te de cha	irge pou	ur réseau	ı de dist	ributio	n d'ea	u à 80°C								
Ber	Désignations éléments	Linéai	M	odules	PdC		Base c	lébit à :	20-0	Masse	Chalour	Viscosité	Débit	Types r	éseaux (o	limensions int	érieures)			Vitess	Nbre	Pression	Perte	de charge
	Designations cientino	tubo	KFis	a K	Nbro	Déb.base	Nbre	simulta	Déb.insta	volumique	Marrique	cinématiqu	réel	Bouht	Larg	Indi Matériau	Forme	Ø6qui.	rugarité	réelle	Reynolds	dynami	Unitairo	Totale
		m	Valo	ur	U	Hr	U	Valour	10 r	kq/m3	Kj/kq*k	contintakor	Hr	mm	mm	Naturo		mm	mm	mtr	U	mbar	mbartm	mbar
	- Réduction - d1/d2 = 0.75		0,16	0,16	1	25,00	90	0,08	2,12	971,734	4,1965	0,3653	2,18	42,5		Aciersou	Circulair	42,5	0,06	1,54	178615,837	11,45		1,83
	Colonne montante él	tage	2																					
	 Réseau distribution 	4				12,00	52	0,11	1,34	971,734	4,1965	0,3653	1,38	36,6		Aciersou	Circulair	36,6	0,06	1,31	131516,106	\$,37	5,47	21,89
	 Té (passage ligne droite) 			0,44	1	12,00	52	0,11	1,34	971,734	4,1965	0,3653	1,38	36,6		Aciarsou	Circulair	36,6	0,06	1,31	131516,106	\$,37		3,65
	- Réduction - d1/d2 = 0.75		0,16	0,16	1	12,00	52	0,11	1,34	971,734	4,1965	0,3653	1,38	36,6		Aciersou	Circulair	36,6	0,06	1,31	131516,106	8,37		1,34
				1				1										·						
	Colonne montante él	ane	3					1																
	- Béseau distribution	36	Ť			7.00	28	0.15	108	971 734	d 1965	0.2652	1 11	26.6		A size sau	Giraulair	36.6	0.06	1.05	105439 433	5.20	3.57	128 41
	 Té (nassage ligne droite) 			1 0 44	1	7.00	28	0.15	108	971 734	4 1965	0.3653	111	36.6		Acier row	Girculair	36.6	0.06	1.05	105438 433	5.38		2.35
	 Béduction - d1/d2 = 0.75 				l i	7.00	28	0.15	108	971 734	d 1965	0.3653	1 11	36.6		Acier con	Circulair	36.6	0.06	1.05	105438 433	5.38		2,00
					····			0,10	,,	110,124	-,	*,****					1	1	*,**	1,00				
	- Béseau distribution	19				2.50	12	0.24	0.60	971 734	d 1965	0.3653	0.62	27.4		Acier row	Girculair	27.4	0.06	1.01	77393 2965	4 4 4	4.68	88.88
	- Coude standard 90'			1	4	2,50	12	0.24	0.80	671 724	4 1065	0.2652	0.62	27.6		Actore	Circulai	27.4	0.04	1.01	77292 2005	1 1 1 1 1	1,00	13.81
	- Coude standard 60			0.22	a l	2,50	12	0.24	0.60	074 724	4,1702	0,2652	0,02	27.6		Actions	Circulai	27.0	0.00	1.01	77292 2965	4,77		11.05
	- Bobinet boisseau - d1/d2	- 0.9		1 0.01	Ť	2,50	12	0.24	0.00	074 724	4,1702	0,3655	0,02	27.6		Aciaryau	o inculair	37.6	0,00	4.04	77202 2015	4,77		0.91
	- Hobinet bolssead - dildz	1 0.0		0,18	!	2,00	16	0,24	0,00	211,134	4,1763	0,3655	0,02	61,7		HCIOFSBU	Circulair	1 ^{61,2}	0,00	1,01	11393,2965	4,77		0,01
	- Réseau distribution cuiu	19				150	6	95.0	0.54	674 724	4 404 5	0.2652	0.55	26		·····	Circulais	24	0.04	1.04	72000.04	6.24	5 37	96 58
	 Coude standard 90: 				5	150	ě.	0.00	0.54	074 724	4,1702	0,3655	0,55			Aciaryau	Oliveral air	1	0,00	1,04	72000,01	5,64	0,01	19.40
	- Coude standard 50			1	1 5	1,50	e a	0.00	0.54	074 724	4,1765	0,3653	0,55			HCIOFSBU	o li culair	1 0	0,00	1,04	73900,91	5,24		5.99
	- Codde Standard 45			0,31		1,00		0,00	0,34	711,134	4,1763	0,3693	0,00	<u> </u>		HCIOFSBU	Circulair	1 "	0,00	1,04	13900,91	5,24		5,05
																Total	orto de	ohard	o du i	6503	n hadraul	iaua an	mhar.	1172 31
						- Coefficie	nte m	aioratio	n de cécurit.	(accembla	nos mal róa	licós entart	rade présie	ionnel et	<u>2</u>]	TUtar	erte ut	chary	c uu i	esea	u ngurau	ique en	52	58.62
6	Calcul du NPSH (Por	nne as	mirar	l on m	1	Déciment	ion i	dec éa	n de securio	e (assembla	ges marrea	nises, encare	rage previs	nonner, et	<u>~.j</u>							Quant	Rdc / 11	50,02
	Altitude	ipe as	spirai	20-		Disconne	chour	hukrouli	due due	e de le cares												ordanc	Fucto	
	- Tompáraturo du fluido			2010		- Eiltro	cccar	nymaan	444													1	771.P -	770.00
	- Henteur alomítriaus d'espir	ntine		2.0-		- Vana de		lation															TIKEG	110,00
	 Parte de charge réceau acpir 	action		1.0-		- Comptor	rega	acion																
	 Perce de charge resedu aspir Procesion honomátrique dáfai 	uarabl		0 0 00		- Dinore																		
	- Pression barometrique dera	TOTADI	C-25	۳,20	1	- Divers										Tetel								2000.02
	- Pression de vaporisation			0,24		Descrip	1					. í .				Total	perce a	e cnarg	je au	circui	t nyarau	ique en	mpar :	2000,93
1 -	- Masse volumique du fluide			998		- Fressic	or rek	acrye di:	sponible al	a poincie p	ius eiolgr	ie en baf				;	0,5064					- Soicen	mbar:	300,00
L	- NPSH disponible en mètre d	e liquie	de	1,75		- Hauteu	géo	métriqu	ie en circui	t ouvert er	n				32,0m			Den	isité du	ı fluide		971,64	kg/m3	3049,19
						- Pressic	n dis	ponible	en amont	du surpre:	sseur à dé	éduire en b	ar				3,00 b ar					- Soit en	mbar :	3000,00
															Ha	uteur mar	ométri	que to	tale (HMT)	de la po	mpe en	mbar :	2350,12

Toutes les cellules de calcul en bleu violet sont programmées.

Module d'indexation de la table réseaux

L'affichage et l'imputation éventuelle des types de réseaux se font par l'intermédiaire d'un module spécifique.

Codage des ca	nalisations de la t	able réseaux						X
Cliquez avec la Ensuite position souris + collez.	souris sur la ligne sou nez vous dans la colo	naitée et cliquez Inne code dans l'i	sur OK, le cod entité réseaux	e réseaus et cliquez	sera placé (clavec le bo	dans le pre outon de d	isse-papie roit de la	er.
Codage	Nature	Désignation	Dim. nomin	ØINT	épais.	Ø EXT.	rugosité	
Réseaux T1 č	Tube aciersoudé	Norme NFA 49	Pression	10 & 16	bar			
		===========	========:	======				
12T	acier T1	12/17	DN2 - 3/8"	13,20	2	17,20	0,06	
15T	acier T1	15/21	DN15 - 1/2"	16,60	2,35	21,30	0,06	
20T	acier T1	20/27	DN20 - 3/4"	22,20	2,35	26,90	0,06	
25T	acier T1	26/34	DN25 - 1"	27,90	2,9	33,70	0,06	
32T	acier T1	33/42	DN32 - 1 1/4	36,60	2,9	42,40	0,06	
40T	acier T1	40/49	DN40 - 1.5"	42,50	3,25	48,30	0,06	
50T	acier T1	50/60	DN50 - 2"	53,80	3,25	60,30	0,06	
65T	acier T1	66/76	DN65 - 2.5"	69,60	3,25	76,10	0,06	
80T	acier T1	80/90	DN80 - 3"	82,40	3,25	88,90	0,06	
100 T	acier T3	107/114	DN100 - 4"	105,30	4,5	114,30	0,06	
125T	acier T3	139 / 7	DN125 - 5"	130,70	4,5	139,70	0,06	
150 T	acier T10	168,3 / 4,5	DN150 - 6"	159,30	4,5	168,30	0,045	
200T	acier T10	219,176,3	DN200 - 8"	207,30	5,9	219,10	0,045	-
Vous pouvez imp	outer au clavier le code	: 80 T	directement dar	ns la cellule	souhaitée ©2001	-2003 Jean	OK	5SE

Les types de canalisations intégrées dans le programme HydroWater pour le calcul des pertes de charge, sont :

- Tube acier noir T1 et T2 (utilisation classique) Diamètre DN12 à DN400 (3/8" à 16")
- Tube acier galvanisé Diamètre DN12 à DN 300
- Tube acier noir T3 Diamètre DN12 à DN150
- Tube acier noir T10 Diamètre DN 32 à DN 400
- Tube acier noir série spéciale Diamètre DN 450 à DN 900
- Tube acier selon normes USA 5S, 10S, 40S, 80S Diamètre 1/2" à 30" 15 à 750 mm
- Tube cuivre (usage courant) Diamètre DN10 à DN 50/52
- Tube cuivre selon normes Européenne série X, Y, Z Diamètre 4 à 150 mm
- Tube cuivre selon normes USA série K, L, M Diamètre 1/4" à 12" 8 à 300 mm
- Tube cuivre (qualité frigorifique) Diamètre DN 6 à DN 80 (1/4" à 3 1/8")
- Tube PVC chauffage sol Diamètre DN 12 à DN 25
- Tube PVC pression Diamètre DN 12 à DN 315
- Tube fonte ductile à joint- Diamètre DN 50 à DN 2000
- Tube fonte ductile haute pression Diamètre DN 80 à DN 300
- Tube polyéthylène (PehD) Diamètre DN16 à DN 315
- Tube polyéthylène pour le gaz Diamètre DN15 à DN 200
- Tube inox 316L Diamètre DN 12 à DN 200
- Robinetterie Diamètre DN12 à DN 400 (3/8" à 16")

Soit l'équivalent de 415 tubes indexés dans le programme.

Module de calcul perte de charge singulière

Voir thématique : Calcul des pertes de charges singulières sur réseaux hydrauliques

Il est prévu dans le programme une procédure d'appel placée sur la barre du menu personnalisé servant a connaître les valeurs indicatives des coefficients K et a des imputations directes sur la feuille de travail.

L	iste des éléments de perte de charge singuli	ères 🛛 🗙	our rése	au de
			Débit	Débi
1	ositionnez-vous au prealable dans la colonne "Desigi	nation	vapeur	Con
1	lements' du tableau de calcul.		Kquap./h	·0
- 0	liquez avec la souris sur la ligne souhaitée, les éléme	ents seront	10180,21	
i	mputés directement dans le tableau de calcul.			
×	wec l'utilisation du facteur de friction, le coéfficient K	sera déterminé	10170 45	
- a	utomatiquement en fonction du diamètre nominal 👘		10178,45	
			10104,66	
S	élection élément de perte de charge particulière		10093.47	
Γ	- Robinet soupape	-	10092,80	
Ŀ			10092.47	
	Désignation	KL /(4.fT)	K	
	- Robinet soupape	340		
L	- Robinet soupape, angle 45°	55		
L	- Robinet soupape, angle 90°	150		
L	- Vanne papillon (2" to 8")	45		
L	- Robinet boisseau - d1/d2 -1	3		
L	- Robinet boisseau - d1/d2 = 0.8	7		
L	- Robinet boisseau - d1/d2 = 0.7	12		
L	- Robinet boisseau - d1/d2 = 0.6	23		
L				
	Clapet de non retour (entièrrement ouvert)			
	 Clapet sécurité à soupape 	600		
	 Clapet sécurité à battant 	50		
a	- Clapet sécurité à disque	40		
,a	- Clapet-crépine + filtre	420		
· · · ·	- Clapet-crépine	75		•

Les programmes HydroTherm, HydroWater et HydroExcel disposent d'un certains nombres de modules de perte de charge "k" à valeurs fixes ou kL qui sont déjà intégrés. Vous cliquez dans un menu déroulant et ensuite sur l'élément que vous souhaitez introduire et l'imputation se fait automatiquement dans la feuille de travail (Désignation + valeur k) sur la ligne où était située initialement la cellule active. Vous pouvez bien sûr modifier la valeur k si nécessaire.

La valeur kl est égal à K /(4.ft), voir : Thématique pertes de charge singulières

Chaque module de perte de charge singulière (robinetterie, coudes, etc.) est recalculé automatiquement en fonction du diamètre introduit.

Module d'évaluation du coefficient de perte de charge

Voir thématique : Calcul des pertes de charges singulières sur réseaux hydraulique

et aussi : Calcul des pertes de charges accessoires

Programme de calcul de module de perte de charge équivalent en fonction de la perte de charge relevée.

Calcul module perte de charge	×
Unités de pression Pa (Pascal)	•
- Perte de charge relevée	100 Pa
- Température de l'eau (limité à 320°C)	100 °C
- Débit de base Q (voir formule empirique)	10000 I/h
- Diamètre nominal Robinet.	DN100 - 4"
- Diamètre intérieur de la robinetterie	101,60 mm
- Masse volumique de l'eau	958,122 kg/m3
- Chaleur massique de l'eau	4,216 Kj/kg-k
- Débit réel selon la température	10 363,62 l/h
- Vitesse circulation orifice robinetterie	0,355 m/s
- Pression dynamique	60,40 Pa
Module équivalent de la perte de charge	1,66
$\mathcal{Q} = \frac{P(w/h) \cdot 0.86}{\Delta T}$ Attention aux décimales. Virgule en Français et point en Anglais (voir configuration windows en paramètres régionnaux)	Valider OK ©2001 Jean Yves MESSE.

Module de calcul de diaphragme

ThermExcel

Voir thématique : <u>Calcul de diaphragme</u>

- d = diamètre du diaphragme
- D = diamètre intérieur du tube
- P1 P2 = perte de charge à créer (Pression différentielle)

ThermExcel

Calcul du diamètre d'un diaphragme		×				
Unites de pression mbar (100 Pa ou l	0,1 kP a)	•				
Pression différentielle (P1 - P2)	1000	mbar				
Température de l'eau (limité à 320°C)	200	•c				
Débit de base Q (voir formule empirique)	50000	1/h				
Diamètre nominal (Voir table) - $\emptyset > 32 \text{ mm}$	107/114	•				
- Nature de la canalisation	acier T3					
- Désignation courante canalisation	DN100 - 4	4"				
- Diamètre intérieur du tube (D) :	105,30 mm					
- Masse volumique de l'eau	864,681 kg/m3					
- Chaleur massique de l'eau	4,497 Kj/kg-k					
- Débit réel selon la température	53 829,86 l/h					
- Vitesse de circulation réseau	1,717 m/s					
Diamètre du diaphragme (d) :	43,58 mm					
$\begin{array}{c c} PI_{\parallel} & PI_{\parallel} \\ \hline \\ \hline \\ Debit & \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\$	Valider ©2005 Jea	OK In Yves MESSE				

Programme HydroWater (Régulation)

Voir thématique : <u>Coéfficient Kv, Kvs, Kvo, taux de fuite</u>

Détermination du Kv

La valeur du Kv peut être calculé en fonction des valeurs données "débit et perte de charge estimés".

Calcul vanne de regulation 🔀
Unité de pression mbar (100 Pa ou 0,1 kPa)
- Température de l'eau (Limitée à 320°⊂) 300 °⊂
- Pression de service de l'installation 1 Bar (1000kPa)
- Masse volumique de l'eau
- Chaleur massique de l'eau
Détermination Kv Chute de pression Coefficient débit Kv
La valeur du Kv peut de même être calculée en fonction des valeurs données "débit et perte de charge estimés"
Débit de base Q (selon formule empirique ci-dessous) 10 m3/h
- Chute de pression dans la vanne 100 mbar
- Débit réel en fonction de la température 10,53 m3/h
- Coefficient Kv 27,86 m3/h
Débit d'eau équivalent à 14.5°C sous 1 bar de pression avec une chute de pression de 1 bar au droit de la vanne.
Image: Point Attention aux décimales.Virgule en Français et point en Anglais (voir configuration windows en paramètres régionnaux)ValiderOkOkSecond Second

Coefficient de débit Kv pour une vanne

C'est le débit d'eau Q en m3/h mesuré à 4° C (Masse volumique = 1000kg/m3) qui pour une perte de charge de 1 bar, passe à travers la vanne considérée comme entièrement ouverte.

Calcul vanne de regulation 🔀
Unité de pression mb ar (100 P a ou 0,1 kP a)
- Température de l'eau (Limitée à 320°⊂) 15 °⊂
- Pression de service de l'installation 1 Bar (1000kPa)
- Masse volumique de l'eau
- Chaleur massique de l'eau
Détermination Kv Chute de pression Coefficient débit Kv
Le débit d'eau Q en m3/h peut être évalué dans une vanne en fonction du Kv et de la chute de pression estimée.
- Chute de pression à travers la vanne
Sélection vanne
Vanne L&G - VXF31 - DN40 🗾 19 Coef. Kv
- Débit réel en fonction de la température 10,41 m3/h
- Débit de base Q (selon formule empirique ci-dessous) 10,40 m3/h
$\bigcirc P(w/h) \cdot 0.86 \text{Attention aux décimales.} \\ \bigvee O = \frac{P(w/h) \cdot 0.86}{\text{Virgule en Français et point}} \boxed{\text{Valider}} \text{Ok}$
Aide en Anglais (voir configuration windows en ©2001 Jean Yves MESSE. paramètres régionnaux)

Chute de pression

C'est la différence de pression entre l'entrée et la sortie de la vanne. C'est donc sa perte de charge.

La valeur du Kv est de même utilisée pour calculer la chute de pression dans une vanne en fonction du débit qui le traverse.

Calcul vanne de regulation
Unité de pression mbar (100 Pa ou 0,1 kPa)
- Température de l'eau (Limitée à 320°⊂) 15 °⊂
- Pression de service de l'installation 1 Bar (1000kP
- Masse volumique de l'eau
- Chaleur massique de l'eau
Détermination Kv Chute de pression Coefficient débit Kv
La valeur du Kv est de même utilisée pour calculer la chute de pression dans une vanne en fonction du débit qui le traverse.
Débit de base Q (selon formule empirique ci-dessous)
Sélection vanne
Vanne L&G - VXF31 - DN40 🔹 19 Coeft. Kv
- Chute de pression dans la vanne
- Débit réel en fonction de la température 12,01 m3/h
Calcul de l'autorité de la vanne
- Perte de charge du circuit à réguler 200
- Autorité de la vanne
$Q = \frac{P(w/h) \cdot 0.86}{\Delta T}$ Attention aux décimales. Virgule en Français et point Valider Ok
Aide configuration windows en ©2001 Jean Yves MESSE. paramètres régionnaux)

Programme HydroWater (Calcul pompe)

Module de calcul du moteur de pompe en circuit fermé

Voir thématique : Calcul moteur de pompe

Dimensionnement moteur de pompe en circuit fermé 🛛 🔀										
Unites de pression Bar (100000 Pa ou 100 kPa)										
Hauteur manométrique totale	3	Bar								
Débit de base Q (voir formule	200 m3/h									
Rendement pompe	60	96								
Rendement transmission, marge sécurité 🛛	90	96								
Résultats des éléments	Aid	le 🔽								
Energie mécanique fluide	16,667 kW	/h								
Rendement pompe & transmission	54,00 %									
Energie utile absorbée arbre moteur .	30,864 Ki	Wh								
Consommation énergie électrique (kVA/h)	38,91 kV)	A								
Résultats électriques moteur à charge nominale										
Puissance nominale moteur	37,00 kw									
Rendement moyen du moteur	91,29 %									
Puissance nominale active absorbée	40,528 ki	N								
Facteur de puissance (Cos)	86,88 %									
Puissance électrique nominale	48,650 k	VA								
Intensité nominale	67,34 A	Tri 400∨								
Moteur < 0.75 kw	Moteur > 0.5 k	w								
$O = \frac{P(w/h) \cdot 0.86}{\text{Virgule en Français et}}$	Valider	ОК								
Formule empirique point en Anglais (voir configuration windows en paramètres régionnaux)	©2001 Jean Yves MESSE									

Pour un débit d'eau de 200 m3/h et une perte de charge de 3 bar, l'énergie utile absorbée sur l'arbre moteur est de 30,86 kw.

La puissance nominale du moteur doit être supérieure ou égale à cette valeur. Les puissances motrices sont normalisées.

Le dimensionnement de l'installation électrique sera effectué avec :

- une puissance nominale moteur de 37 kW.
- une puissance électrique apparente disponible de 46,65 kVA (Kilo Volt Ampère par heure) en Tri 400 V + terre
- un câble d'alimentation déterminé sur la base d'un courant électrique de 67,34 A.

Dans le cas présent le moteur ne fonctionnera pas à pleine charge, il fonctionnera à 83% de sa puissance nominale.

La consommation réelle d'énergie électrique sera de 38,91 kWh. C'est cette valeur qui sera utilisée si l'on veut effectuer un bilan annuel de consommation d'énergie électrique.

Cela est bien entendu q'une évaluation (les rendements des pompes varient selon les fabricants), mais ces données seront très utiles lors d'un avant projet ou d'une estimation de prix.

Programme HydroWater (Expansion, soupape, etc.)

Feuille de calculs annexes

Dans le programme ThermExcel, une feuille de calcul complémentaire totalement programmée peut être insérée dans le fichier de travail permettant de dimensionner les équipements complémentaires dans une installation thermique, a savoir :

- Le ou les vases d'expansion (fermé ou ouvert)
- La ou les soupapes de sécurité.
- La bouteille casse pression ou bouteille de découplage hydraulique.
- Le volume d'eau tampon dans une installation d'eau glacée pour assurer le bon fonctionnement des refroidisseurs de liquide.
- Le calcul automatique de la contenance en eau de l'installation, de la surface de calorifuge et de la peinture pour les travaux de sous-traitance par exemple.

				Linéair	Calorifuge			Peinture		Contenance eau		
Volume d'eau (valeurs indi	catives)			m	épr	surffm2fml	Q x surf	surftm2tn	Q x surf	U	litres	UxQ
-ventilo-convecteurs:5à61	/ 1kW/K											
- abrothormor: 7 8 8/1kW/h										8ku	\$,001	64,001
- panneaux desal : 8,5 à 1017 1kW/h - radiateurs acies : 10 à 1117 1kW/h										6 6 6 10 10	9,001	1.00.33
- chaufferie centrale et collectives : 21/1kW/h										300 ku	2,001	600,001
Øpominal ØEXT ØINT										m	1/m	mxQ
3	2 33/42	42,40 mm	36,60 mm	100 m	25 mm	0,290 m2	29,01m2	0,133 m2	13,31 m2	100 m	1,0521	105,161
CU34	34/36	36,00 mm	34,00 mm		25 m m	0,270 m2	-	0,113 m2	-		0,9071	-
CU40	40742	42,00 mm	40,00 mm		25 m m	0,289 m2		0,132 m2			1,2561	
4	0 40/49	48,30 mm	42,50 mm	80 m 50	25 mm	0,309 m2	24,69 m2	0,152 m2	12,13 m2	80 m	1,4181	113,431
6	5 66476	60,30mm 76,10mm	53,80mm 69.60mm	50 m	50 mm	0,503 m2 0,553 m2	29,11 m2	0,189 m2	9,91m2	90m	3 801	113,011
*	0 80490	88,90 mm	82,40 mm	60 m	50 mm	0,593 m2	35,59 m2	0,279 m2	16,75 m2	60 m	5,331	319,801
10	0 107/114	114,30 mm	105,30 mm		50 mm	0,673 m2		0,359 m2	-		8,701	
12	5 13977	133,00 mm	125,00 mm		50 mm	0,732 m2		0,418 m2			12,271	
15	0 168,374,5	168,30 mm	159,30 mm		50 mm	0,842 m2		0,528 m2			19,921	
20	0 219,176,3	219,10 mm	207,30 mm		50 mm	1,002 m2		0,688 m2			33,731	
30	0 323.977.1	323.90 mm	200,40mm 309,70mm		50 mm	1,111m2 1,331m2		1.017 m2			75,291	
						Calarifuqa	213,59	Pointuro	99,42	Yalur	no d'o au	1605,1 L
Calcul du vase d'expansion sous pression d'azote (Yase d'expansion fermé)												
				-Volume	d'oau da	ınr l'inrtallat	ian (Ya)					1605,08L
Pression circuit d	eau			- Prossia	nstatiqu	10 (Pa) + 0,3 l	bar (pr <i>oss</i> ia)	n do ganfla	qo varo d'oxp	ansion)		1,00 bar
				- Prossia	n de fan:	ctionnomont	installation	(Po-Pros	rion relative)			3,00 bar
Calcul expansion												
- Tomp. d'oau do romplizzago	-Donrit	Donrit6 oau à 1 bar pour 10°C, on kq/m3 999,78 Factour d'oxpanzion (n)							3,58%			
-Temp. d'eau en fanctiannem	-Donrite	i o au à 31	bar pour 90°C), on katm3	965,20	Valume d'e	xpansion (au	57,49L			
Facteur de pressio									2,01			
Yolumo utilo du us				i i	115 201							
volume utile ou vase expansion (vexp)										10,365		
Volume utile de sé	au ins	tallat	ion			16,05L	=	2,01	32,21L			
Yolume nominal du vase d'expansion (Yn)										147,57L		
Vase d'expansion	ouvert (il	doit oblig	atoiremen	t être pla	acé au	point le pl	us haut d	e l'install.	ation)			
Capacité utile en % er	n eau de l'ir	stallation				62	96.3 L	ícapaci	té utile du	vase d'	expans	ion ouvert)
- Ø du tube d'expansio	n (Vitesse	< à 0.10 m	ls)					(r				
- Ø du tube de sécurité 300,0 km 39 mn												
					oreserves							
Soupape de sécuri	té				Puirran	co thorm.	Ømm					
-Øde raccordement d	u tube de s	écurité			530	0,0 kw	47 mn					
Routeille easse pr	accion						dolta T	uit mie	Ømm			
Vitesse dans la houteil	e · 0.05 à 0	10 m/s			30	a a b-	20.10	0.10	214 mp			
ricesse dans la bodtell	.c . 0,00 a 0	101115					20 0	0,10	E17100			
Yolume d'eau mini	mum circ	uit eau	glacée -	V = (N 8	60 x Z)	/ 4,18 x de	elta T)					
-Puirsanco du promior 6taqo	des refruidis	rours do liqui	dø (kW)								N	67,0 kw
- Temps de fanctiannement minimum acceptable (mini 5 mn)											z	5,00 mn
-Ecart do tompóraturo aux c	.2·C)							ielta T	2 °C			
- Contonanco totalo minimalo on o au (litror) de l'installation											v İ	2404,3 L

Certains des éléments de calcul peuvent être retirés aisément de la feuille de travail.

Calcul vase d'expansion

Si on suit les documents techniques des fabricants, le volume du vase d'expansion est déterminé exclusivement en fonction du volume d'expansion du système hydraulique et de la pression d'azote du vase d'expansion.

Cette approche n'est pas bonne, le vase d'expansion ne sert pas seulement à recevoir l'eau par accroissement d'expansion, mais il agit également comme réservoir d'eau servant à compenser des pertes dues aux fuites sur le système hydraulique sur une certaine période de temps.

Avec le vase d'expansion ouvert traditionnel, le remplacement des pertes de fuite de l'eau a lieu automatiquement en raison de la hauteur du réservoir et donc par conséquent d'une pression statique plus élevée de remplissage d'eau.

Dans le cas d'un réservoir fermé à membrane, le volume d'azote tampon de l'autre côté du diaphragme doit compenser les pertes d'eau se produisant dans les conditions normales de fonctionnement.

Cependant c'est seulement possible quand :

- Une réserve d'eau suffisante complémentaire est accordée dans la détermination du dimensionnement du vase d'expansion
- La pression du système hydraulique même lorsque le système est froid est toujours plus importante que la pression statique.
- La relation entre la pression dans le système hydraulique et le diaphragme du réservoir d'expansion est tel que quel que soit les conditions de fonctionnement, il y aura toujours de l'eau disponible dans le réservoir d'expansion et qui en raison de la pression d'azote retournera dans le système hydraulique même en cas de fuite d'eau dans système hydraulique.

Afin de réaliser cette situation, le système de chauffage exige en conséquence l'installation d'un vase d'expansion plus conséquent et doit même dans l'état de l'installation à froid être rempli à une pression plus élevée que la pression initiale d'azote dans le vase d'expansion.

Les Fig. 1 et 2 expliquent les méthodes incorrectes précédentes de remplissage qui ne fournissent pas un bon approvisionnement en eau du réservoir.

- 1. La pression de remplissage dans l'installation et la pression initiale d'azote sont identique. Il n'y a aucune possibilité d'un approvisionnement du réservoir.
- 2. La pression initiale de remplissage de l'installation est plus grande que la pression d'azote. La perte d'eau est automatiquement substituée.

Quelle taille le réservoir de l'eau devrait-il être?

Il est recommandé que le réservoir contienne en plus 1% du volume entier de l'eau avec un minimum de 2 ou 3 litres quel que soit le cas du type de système hydraulique.

Etant donné que la pression initiale de l'azote n'est pas toujours identique à la pression statique du système hydraulique, il faut que soit :

- la pression du système hydraulique soit augmentée à la valeur de la pression du volume d'azote,
- la pression d'azote soit ajustée ou réduite à la pression de la hauteur statique du système hydraulique.

La première méthode est recommandée, car elle n'exige aucun outil spécial.

Le calcul du diaphragme d'un vase d'expansion peut être effectué très facilement en appliquant l'une des deux formules suivantes:

 1° / - Volume d'eau du système hydraulique (Ve) < = 300 litres:

$$Vn = 3 + (n \cdot Ve) \cdot \left(\frac{P_2}{P_2 - P_1}\right)$$

 2° / - Volume d'eau du système hydraulique (Ve) > 300 litres:

$$Vn = \frac{Ve}{100} \cdot (n \cdot Ve) \cdot \left(\frac{P_2}{P_2 - P_1}\right)$$

- Vn = volume nominal du vase d'expansion en litres
- Ve = volume d'eau dans le système hydraulique
- P1= pression initiale en bar absolu (pa = hauteur statique du système de chauffage ou de la pression initiale choisie dans le vase d'expansion)
- p2 = pression finale en bar absolu (P2 = 2,0 +1,013 = 3,013)
- n = coefficient d'expansion de l'eau dans le système hydraulique en pourcentage (voir formule ci-dessous).

$$n = \left(\frac{\rho 1 - \rho 2}{\rho 2}\right) \cdot 100$$

• p1 = masse volumique de l'eau à la température de remplissage en kg/m3

p2 = masse volumique de l'eau à la température de fonctionnement de l'installation en kg/m3

Le résultat de la variation de volume en fonction de cette formule de calcul peut être obtenu avec le diagramme ci-dessous en fonction de la température en régime de fonctionnement.

Exemple de calcul :

- Ve = 1414,23 litres en volume d'eau dans l'installation
- P2 = 3,0 bar + 1,013 bar = 4,013 bar absolu en pression normale de fonctionnement
- $Te = 90^{\circ}C$ Température d'eau en fonctionnement normal
- hauteur statique = 6 m
- P1 = 1,0 bar + 1,013 bar = 2,013 bar absolu Pression initiale minimum = 0,6 bar pression initiale sélectionnée en bar = 1,0
- n = 3,58 % d'expansion d'eau (10°C à 90°C) soit 50,66 litres en volume d'expansion d'eau
- fe = 2,01 (facteur de pression sur l'installation) = P2 / (P2 P1)
- Vexp = 101,65 litres (Volume utile du vase d'expansion)
- 14,14 litres (1% du volume en eau de l'installation pour sécuriser les fuites d'eau occasionnelles dans le système hydraulique)
- Vn = 130,02 litres Volume nominal du vase d'expansion = (50,66 + 14,14) * 2,01.

Comme vous pouvez voir dans cet exemple, bien que l'installation dispose seulement d'une hauteur statique de 6 m, elle est traitée comme si elle avait une hauteur statique de 10 m afin de satisfaire le calcul avec une pression initiale standard d'azote de 1,0 bar.

Maintenant, on peut calculer exactement la pression de remplissage exigée pour remplir le vase d'expansion du système. Cependant ce procédé est maladroit, il est recommandé d'opérer comme suit :

Le remplissage initial du système devrait être appliqué jusqu'à hauteur de la pression de tarage de la soupape de sécurité et le système de chauffage devrait être mis en service jusqu'à la température de fonctionnement maximum. De cette façon, l'eau en excès sera expulsée après que le système se refroidisse, le volume entier utilisable du vase d'expansion sera alors disponible. En même temps, un contrôle sur la fonction des dispositifs de sécurité aura été exécuté.

Vous devez faire attention pour vous assurer que la pression de système à froid soit au moins de 0,2 bar au-dessus de la pression de remplissage d'azote du vase d'expansion. L'aiguille rouge du manomètre de pression devrait être ajustée sur une pression de remplissage d'azote de la barre +0,2.

Pourquoi le réservoir d'approvisionnement en eau est-il si important?

Si l'installation de chauffage est remplie seulement à la pression initiale d'azote du vase d'expansion comme c'est généralement le cas, et que alors l'installation est mise en fonctionnement normal, l'expansion de l'eau exercée dans le vase d'expansion produit une pression plus élevée que la pression initiale d'azote du réservoir. Toutes les parties du système hydraulique sont donc en état surpressurisé. Cependant pratiquement tous les systèmes hydrauliques perdent de l'eau due à des fuites ou à des opérations de dégazage, particulièrement durant les premiers mois de fonctionnement.

En outre, chaque filetage ou équipement divers représente une fuite potentielle. Sur ces endroits, la vapeur d'eau se répand constamment, dépendant de la température et des propriétés d'étanchéité relatives à ces joints. L'eau qui s'échappe du système hydraulique par ce processus, est complétée par l'eau contenue dans réservoir d'expansion.

Si ensuite le système se refroidit en raison des conditions de fonctionnement telles que notamment en réduction de nuit ou durant les périodes demi saison par exemple, il y a insuffisamment d'eau pour maintenir le système totalement rempli et inévitablement la partie plus élevée du système de chauffage, souffrira des conditions à basse pression.

Cette basse pression, notamment aux endroits ou sont placés les dispositifs de dégazages automatiques même aux entrées d'air, contribue à un enrichissement de l'eau de chauffage par l'oxygène. Naturellement, il n'est pas nécessaire de demander aux experts d'expliquer dans le grand détail, les effets que l'oxygène et l'eau ont sur les composants tels que les canalisations en acier. Il est donc important que chaque système de chauffage, quelque soit l'emplacement ou des conditions de fonctionnement dispose d'une pression suffisante.